Active Filters

  • (-) Keywords = genetic structure
Search Results 1 - 20 of 20
  • CSV Spreadsheet
  • RSS Feed
Select Page
Historical museum specimens reveal the loss of genetic and morphological diversity due to local extinctions in the endangered water chestnut <I>Trapa natans</I> L. (Lythraceae) from the southern Alpine lake area
Frey, D., Reisch, C., Narduzzi-Wicht, B., Baur, E.-M., Cornejo, C., Alessi, M., & Schoenenberger, N. (2017). Historical museum specimens reveal the loss of genetic and morphological diversity due to local extinctions in the endangered water chestnut Trapa natans L. (Lythraceae) from the southern Alpine lake area. Botanical Journal of the Linnean Society, 185, 343-358. https://doi.org/10.1093/botlinnean/box061
Evaluating the functionality of expert-assessed wildlife corridors with genetic data from roe deer
Burkart, S., Gugerli, F., Senn, J., Kuehn, R., & Bolliger, J. (2016). Evaluating the functionality of expert-assessed wildlife corridors with genetic data from roe deer. Basic and Applied Ecology, 17(1), 52-60. https://doi.org/10.1016/j.baae.2015.09.001
Combining landscape genetics, radio-tracking and long-term monitoring to derive management implications for Natterjack toads (<I>Epidalea calamita</I>) in agricultural landscapes
Frei, M., Csencsics, D., Brodbeck, S., Schweizer, E., Bühler, C., Gugerli, F., & Bolliger, J. (2016). Combining landscape genetics, radio-tracking and long-term monitoring to derive management implications for Natterjack toads (Epidalea calamita) in agricultural landscapes. Journal for Nature Conservation, 32, 22-34. https://doi.org/10.1016/j.jnc.2016.04.002
Dams and canyons disrupt gene flow among populations of a threatened riparian plant
Werth, S., Schödl, M., & Scheidegger, C. (2014). Dams and canyons disrupt gene flow among populations of a threatened riparian plant. Freshwater Biology, 59(12), 2502-2515. https://doi.org/10.1111/fwb.12449
Genetic consequences of using seed mixtures in restoration: a case study of a wetland plant <I>Lychnis flos-cuculi</I>
Aavik, T., Edwards, P.J., Holderegger, R., Graf, R., & Billeter, R. (2012). Genetic consequences of using seed mixtures in restoration: a case study of a wetland plant Lychnis flos-cuculi. Biological Conservation, 145(1), 195-204. https://doi.org/10.1016/j.biocon.2011.11.004
Contemporary gene flow and mating system of <i>Arabis alpina</i> in a Central European alpine landscape
Buehler, D., Graf, R., Holderegger, R., & Gugerli, F. (2012). Contemporary gene flow and mating system of Arabis alpina in a Central European alpine landscape. Annals of Botany, 109(7), 1359-1367. https://doi.org/10.1093/aob/mcs066
Ecology and life history affect different aspects of the population structure of 27 high-alpine plants
Meirmans, P.G., Goudet, J., IntraBioDiv Consortium,, & Gaggiotti, O.E. (2011). Ecology and life history affect different aspects of the population structure of 27 high-alpine plants. Molecular Ecology, 20(15), 3144-3155. https://doi.org/10.1111/j.1365-294X.2011.05164.x
Break zones in the distributions of alleles and species in alpine plants
Thiel-Egenter, C., Alvarez, N., Holderegger, R., Tribsch, A., Englisch, T., Wohlgemuth, T., … Gugerli, F. (2011). Break zones in the distributions of alleles and species in alpine plants. Journal of Biogeography, 38(4), 772-782. https://doi.org/10.1111/j.1365-2699.2010.02441.x
Erfolgreiche Habitatvernetzung für Laubfrösche
Angelone, S., Flory, C., Cigler, H., Rieder-Schmid, J., Wyss, A., Kienast, F., & Holderegger, R. (2010). Erfolgreiche Habitatvernetzung für Laubfrösche. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 155(3-4), 43-50.
Genetische Struktur von Waldbäumen im Alpenraum als Folge (post)glazialer Populationsgeschichte
Gugerli, F., & Sperisen, C. (2010). Genetische Struktur von Waldbäumen im Alpenraum als Folge (post)glazialer Populationsgeschichte. Schweizerische Zeitschrift für Forstwesen, 161(6), 207-215. https://doi.org/10.3188/szf.2010.0207
Landscape genetics: where are we now?
Storfer, A., Murphy, M. a., Spear, S.F., Holderegger, R., & Waits, L.P. (2010). Landscape genetics: where are we now? Molecular Ecology, 19(17), 3496-3514. https://doi.org/10.1111/j.1365-294X.2010.04691.x
Identity and genetic structure of the photobiont of the epiphytic lichen <i>Ramalina menziesii</i> on three oak species in southern California
Werth, S., & Sork, V.L. (2010). Identity and genetic structure of the photobiont of the epiphytic lichen Ramalina menziesii on three oak species in southern California. American Journal of Botany, 97(5), 821-830. https://doi.org/10.3732/ajb.0900276
Population genetics of lichen-forming fungi - a review
Werth, S. (2010). Population genetics of lichen-forming fungi - a review. Lichenologist, 42(5), 499-519. https://doi.org/10.1017/S0024282910000125
History or ecology? Substrate types as a major driver of spatial genetic structure in Alpine plants
Alvarez, N., Thiel-Egenter, C., Tribsch, A., Holderegger, R., Manel, S., Schönswetter, P., … IntraBioDiv Consortium,. (2009). History or ecology? Substrate types as a major driver of spatial genetic structure in Alpine plants. Ecology Letters, 12(7), 632-640. https://doi.org/10.1111/j.1461-0248.2009.01312.x
Population genetics suggests effectiveness of habitat connectivity measures for the European tree frog in Switzerland
Angelone, S., & Holderegger, R. (2009). Population genetics suggests effectiveness of habitat connectivity measures for the European tree frog in Switzerland. Journal of Applied Ecology, 46(4), 879-887. https://doi.org/10.1111/j.1365-2664.2009.01670.x
Concordant genetic breaks, identified by combining clustering and tessellation methods, in two co-distributed alpine plant species
Thiel-Egenter, C., Holderegger, R., Brodbeck, S., IntraBioDiv Consortium,, & Gugerli, F. (2009). Concordant genetic breaks, identified by combining clustering and tessellation methods, in two co-distributed alpine plant species. Molecular Ecology, 18(21), 4495-4507. https://doi.org/10.1111/j.1365-294X.2009.04360.x
Pronounced fluctuations of spruce bark beetle (Scolytinae: <i>Ips typographus</i>) populations do not invoke genetic differentiation
Gugerli, F., Gall, R., Meier, F., & Wermelinger, B. (2008). Pronounced fluctuations of spruce bark beetle (Scolytinae: Ips typographus) populations do not invoke genetic differentiation. Forest Ecology and Management, 256(3), 405-409. https://doi.org/10.1016/j.foreco.2008.04.038
Local genetic structure in a North American epiphytic lichen, <i>Ramalina menziesii</i> (Ramalinaceae)
Werth, S., & Sork, V.L. (2008). Local genetic structure in a North American epiphytic lichen, Ramalina menziesii (Ramalinaceae). American Journal of Botany, 95(5), 568-576. https://doi.org/10.3732/ajb.2007024
Landscape-level gene flow in <i>Lobaria pulmonaria</i>, an epiphytic lichen
Werth, S., Gugerli, F., Holderegger, R., Wagner, H.H., Csencsics, D., & Scheidegger, C. (2007). Landscape-level gene flow in Lobaria pulmonaria, an epiphytic lichen. Molecular Ecology, 16(13), 2807-2815. https://doi.org/10.1111/j.1365-294X.2007.03344.x
Modelling forest recolonization by an epiphytic lichen using a landscape genetic approach
Wagner, H.H., Werth, S., Kalwij, J.M., Bolli, J.C., & Scheidegger, C. (2006). Modelling forest recolonization by an epiphytic lichen using a landscape genetic approach. Landscape Ecology, 21(6), 849-865. https://doi.org/10.1007/s10980-005-5567-7