Active Filters

  • (-) Keywords = lichenized fungi
  • (-) Keywords ≠ endemics
Search Results 1 - 14 of 14
  • RSS Feed
Select Page
The phylogeny and taxonomy of <em>Glypholecia</em> (Acarosporaceae, lichenized Ascomycota), including a new species from northwestern China
Yin, Acheng, Zhong, Qyi, Scheidegger, C., Jin, Jzhen, Worthy, F. R., Wang, Lsong, & Wang, Xyu. (2023). The phylogeny and taxonomy of Glypholecia (Acarosporaceae, lichenized Ascomycota), including a new species from northwestern China. MycoKeys, 98, 153-165. https://doi.org/10.3897/mycokeys.98.104314
Revision of <em>Dimelaena </em>Norman (Caliciaceae, Ascomycota) species containing usnic acid reveals a new species and a new combination from China
Ai, M., Zhong, Q., Scheidegger, C., Wang, L., & Wang, X. (2022). Revision of Dimelaena Norman (Caliciaceae, Ascomycota) species containing usnic acid reveals a new species and a new combination from China. Phytotaxa, 574(4), 259-272. https://doi.org/10.11646/phytotaxa.574.4.1
Low genetic differentiation between apotheciate &lt;em&gt;Usnea florida&lt;/em&gt; and sorediate &lt;em&gt;Usnea subfloridana&lt;/em&gt; (Parmeliaceae, Ascomycota) based on microsatellite data
Degtjarenko, P., Mark, K., Moisejevs, R., Himelbrant, D., Stepanchikova, I., Tsurykau, A., … Scheidegger, C. (2020). Low genetic differentiation between apotheciate Usnea florida and sorediate Usnea subfloridana (Parmeliaceae, Ascomycota) based on microsatellite data. Fungal Biology, 124(10), 892-902. https://doi.org/10.1016/j.funbio.2020.07.007
New records of lichens and lichenicolous fungi from Latvia, with a list of lichenicolous fungi reported from Latvia
Moisejevs, R., Degtjarenko, P., Motiejūnaitė, J., Piterāns, A., & Stepanova, D. (2019). New records of lichens and lichenicolous fungi from Latvia, with a list of lichenicolous fungi reported from Latvia. Lindbergia, 2019(1), 1-6. https://doi.org/10.25227/linbg.01119
Unconstrained gene flow between populations of a widespread epiphytic lichen <i>Usnea subfloridana</i> (Parmeliaceae, Ascomycota) in Estonia
Degtjarenko, P., Tõrra, T., Mandel, T., Marmor, L., Saag, A., Scheidegger, C., & Randlane, T. (2018). Unconstrained gene flow between populations of a widespread epiphytic lichen Usnea subfloridana (Parmeliaceae, Ascomycota) in Estonia. Fungal Biology, 122(8), 731-737. https://doi.org/10.1016/j.funbio.2018.03.013
Three new cyanobacterial species of <i>Lobaria</i> (Lobariaceae, Peltigerales) from the Hengduan Mountains, China
Miao, C. C., Wang, X. Y., Scheidegger, C., Wang, L. S., & Zhao, Z. T. (2018). Three new cyanobacterial species of Lobaria (Lobariaceae, Peltigerales) from the Hengduan Mountains, China. Mycosystema, 37(7), 838-848. https://doi.org/10.13346/j.mycosystema.180018
Impact of alkaline dust pollution on genetic variation of <I>Usnea subfloridana</I> populations
Degtjarenko, P., Marmor, L., Tõrra, T., Lerch, M., Saag, A., Randlane, T., & Scheidegger, C. (2016). Impact of alkaline dust pollution on genetic variation of Usnea subfloridana populations. Fungal Biology, 120(10), 1165-1174. https://doi.org/10.1016/j.funbio.2016.05.010
Barcoding lichen-forming fungi using 454 pyrosequencing is challenged by artifactual and biological sequence variation
Mark, K., Cornejo, C., Keller, C., Flück, D., & Scheidegger, C. (2016). Barcoding lichen-forming fungi using 454 pyrosequencing is challenged by artifactual and biological sequence variation. Genome, 59(9), 685-704. https://doi.org/10.1139/gen-2015-0189
Topographic and forest-stand variables determining epiphytic lichen diversity in the primeval beech forest in the Ukrainian Carpathians
Dymytrova, L., Nadyeina, O., Hobi, M. L., & Scheidegger, C. (2014). Topographic and forest-stand variables determining epiphytic lichen diversity in the primeval beech forest in the Ukrainian Carpathians. Biodiversity and Conservation, 23(6), 1367-1394. https://doi.org/10.1007/s10531-014-0670-1
Propagule size is not a good predictor for regional population subdivision or fine-scale spatial structure in lichenized fungi
Werth, S., Cheenacharoen, S., & Scheidegger, C. (2014). Propagule size is not a good predictor for regional population subdivision or fine-scale spatial structure in lichenized fungi. Fungal Biology, 118(2), 126-138. https://doi.org/10.1016/j.funbio.2013.10.009
Primeval beech forests of Ukrainian Carpathians are sanctuaries for rare and endangered epiphytic lichens
Dymytrova, L., Nadyeina, O., Naumovych, A., Keller, C., & Scheidegger, C. (2013). Primeval beech forests of Ukrainian Carpathians are sanctuaries for rare and endangered epiphytic lichens. Herzogia, 26, 73-89. https://doi.org/10.13158/heia.26.1.2013.73
Data sampling of rare and common species for compiling a Red List of epiphytic lichens
Dietrich, M., Stofer, S., Scheidegger, C., Frei, M., Groner, U., Keller, C., … Steinmeier, C. (2000). Data sampling of rare and common species for compiling a Red List of epiphytic lichens. Forest Snow and Landscape Research, 75(3), 369-380.
Biogeographical survey of Estonian lichen flora, with reference to conservation strategies
Randlane, T., & Saag, A. (2000). Biogeographical survey of Estonian lichen flora, with reference to conservation strategies. Forest Snow and Landscape Research, 75(3), 381-390.
Juvenile development and diaspore survival in the threatened epiphytic lichen species <em>Sticta fuliginosa</em>, <em>Leptogium saturninum </em>and <em>Menegazzia terebrata</em>: conclusions for <em>in situ</em> conservation
Zoller, S., Frey, B., & Scheidegger, C. (2000). Juvenile development and diaspore survival in the threatened epiphytic lichen species Sticta fuliginosa, Leptogium saturninum and Menegazzia terebrata: conclusions for in situ conservation. Plant Biology, 2(4), 496-503. https://doi.org/10.1055/s-2000-5954