| Lithic bacterial communities: ecological aspects focusing on Tintenstrich communities
Pittino, F., Fink, S., Oliveira, J., Janssen, E. M. L., & Scheidegger, C. (2024). Lithic bacterial communities: ecological aspects focusing on Tintenstrich communities. Frontiers in Microbiology, 15, 1430059 (12 pp.). https://doi.org/10.3389/fmicb.2024.1430059 |
| Divergent responses of functional diversity to an elevational gradient for vascular plants, bryophytes and lichens
Asplund, J., van Zuijlen, K., Roos, R. E., Birkemoe, T., Klanderud, K., Lang, S. I., & Wardle, D. A. (2022). Divergent responses of functional diversity to an elevational gradient for vascular plants, bryophytes and lichens. Journal of Vegetation Science, 33(1), e13105 (9 pp.). https://doi.org/10.1111/jvs.13105 |
| Low genetic differentiation between apotheciate <em>Usnea florida</em> and sorediate <em>Usnea subfloridana</em> (Parmeliaceae, Ascomycota) based on microsatellite data
Degtjarenko, P., Mark, K., Moisejevs, R., Himelbrant, D., Stepanchikova, I., Tsurykau, A., … Scheidegger, C. (2020). Low genetic differentiation between apotheciate Usnea florida and sorediate Usnea subfloridana (Parmeliaceae, Ascomycota) based on microsatellite data. Fungal Biology, 124(10), 892-902. https://doi.org/10.1016/j.funbio.2020.07.007 |
| Taxonomic study of <em>Hypotrachyna</em> subg. <em>Everniastrum</em> (Hale Ex Sipman) Divakar, A.Crespo, Sipman, Elix & Lumbsch (Ascomycota) from China
Wang, X. Y., Zhang, Y. Y., Liu, D., Li, L. J., Yang, M. X., Yin, A. C., & Wang, L. S. (2020). Taxonomic study of Hypotrachyna subg. Everniastrum (Hale Ex Sipman) Divakar, A.Crespo, Sipman, Elix & Lumbsch (Ascomycota) from China. Cryptogamie, Mycologie, 41(12), 193-209. https://doi.org/10.5252/cryptogamie-mycologie2020v41a12 |
| Estimating the timescale of <em>Lobaria</em> diversification
Cornejo, C., & Scheidegger, C. (2018). Estimating the timescale of Lobaria diversification. Lichenologist, 50(1), 113-121. https://doi.org/10.1017/S0024282917000676 |
| <em>Ricasolia amplissima (Lobariaceae)</em>: one species, three genotypes and a new taxon from south-eastern Alaska
Cornejo, C., Derr, C., & Dillman, K. (2017). Ricasolia amplissima (Lobariaceae): one species, three genotypes and a new taxon from south-eastern Alaska. Lichenologist, 49(6), 579-596. https://doi.org/10.1017/S002428291700041X |
| Bryoflorula Gaudensis – Ein Beitrag zur Kryptogamenflora der Ägäis
Urmi, E., & Keller, C. (2017). Bryoflorula Gaudensis – Ein Beitrag zur Kryptogamenflora der Ägäis. Herzogia, 30(2), 327-342. https://doi.org/10.13158/heia.30.2.2017.327 |
| The regional species richness and genetic diversity of Arctic vegetation reflect both past glaciations and current climate
Stewart, L., Alsos, I. G., Bay, C., Breen, A. L., Brochmann, C., Boulanger-Lapointe, N., … Pellissier, L. (2016). The regional species richness and genetic diversity of Arctic vegetation reflect both past glaciations and current climate. Global Ecology and Biogeography, 25(4), 430-442. https://doi.org/10.1111/geb.12424 |
| A fungal perspective on conservation biology
Heilmann-Clausen, J., Barron, E. S., Boddy, L., Dahlberg, A., Griffith, G. W., Nordén, J., … Halme, P. (2015). A fungal perspective on conservation biology. Conservation Biology, 29(1), 61-68. https://doi.org/10.1111/cobi.12388 |
| Bedeutung alter Wälder für Flechten: Schlüsselstrukturen, Vernetzung, ökologische Kontinuität
Scheidegger, C., & Stofer, S. (2015). Bedeutung alter Wälder für Flechten: Schlüsselstrukturen, Vernetzung, ökologische Kontinuität. Schweizerische Zeitschrift für Forstwesen, 166(2), 75-82. https://doi.org/10.3188/szf.2015.0075 |
| <i>Cetraria steppae</i> Savicz is conspecific with <i>Cetraria aculeata</i> (Schreb.) Fr. according to morphology, secondary chemistry and ecology
Nadyeina, O., Lutsak, T., Blum, O., Grakhov, V., & Scheidegger, C. (2013). Cetraria steppae Savicz is conspecific with Cetraria aculeata (Schreb.) Fr. according to morphology, secondary chemistry and ecology. Lichenologist, 45(6), 841-856. https://doi.org/10.1017/S002428291300056X |
| Remnants fragments preserve genetic diversity of the old forest lichen <i>Lobaria pulmonaria</i> in a fragmented Mediterranean mountain forest
Otálora, M., Martínez, I., Belinchón, R., Widmer, I., Aragón, G., Escudero, A., & Scheidegger, C. (2011). Remnants fragments preserve genetic diversity of the old forest lichen Lobaria pulmonaria in a fragmented Mediterranean mountain forest. Biodiversity and Conservation, 20(6), 1239-1254. https://doi.org/10.1007/s10531-011-0025-0 |
| A species-specific real-time PCR assay for identification of three lichen-forming fungi, <i>Lobaria pulmonaria</i>, <i>Lobaria immixta</i> and <i>Lobaria macaronesica</i>
Werth, S., Cornejo, C., & Scheidegger, C. (2010). A species-specific real-time PCR assay for identification of three lichen-forming fungi, Lobaria pulmonaria, Lobaria immixta and Lobaria macaronesica. Molecular Ecology Resources, 10(2), 401-403. https://doi.org/10.1111/j.1755-0998.2009.02760.x |
| Background, main results and conclusions from a test phase for biodiversity assessments on intensive forest monitoring plots in Europe
Fischer, R., Granke, O., Chirici, G., Meyer, P., Seidling, W., Stofer, S., … Travaglini, D. (2009). Background, main results and conclusions from a test phase for biodiversity assessments on intensive forest monitoring plots in Europe. iForest, 2, 67-74. https://doi.org/10.3832/ifor0493-002 |
| Evaluating macrolichens and environmental variables as predictors of the diversity of epiphytic microlichens
Stofer, S., Bergamini, A., Bolliger, J., & Scheidegger, C. (2007). Evaluating macrolichens and environmental variables as predictors of the diversity of epiphytic microlichens. Lichenologist, 39(5), 475-489. https://doi.org/10.1017/S0024282907007074 |
| Prediction of lichen diversity in an UNESCO biosphere reserve - correlation of high resolution remote sensing data with field samples
Waser, L. T., Kuechler, M., Schwarz, M., Ivtis, E., Stofer, S., & Scheidegger, C. (2007). Prediction of lichen diversity in an UNESCO biosphere reserve - correlation of high resolution remote sensing data with field samples. Environmental Modeling and Assessment, 12(4), 315-328. https://doi.org/10.1007/s10666-006-9066-2 |
| Heavy metal accumulation in <em>Artemisia</em> and foliaceous lichen species from the Azerbaijan flora
Alirzayeva, E. G., Shirvani, T. S., Yazici, M. A., Alverdiyeva, S. M., Shukurov, E. S., Ozturk, L., … Cakmak, I. (2006). Heavy metal accumulation in Artemisia and foliaceous lichen species from the Azerbaijan flora. Forest Snow and Landscape Research, 80(3), 339-348. |
| Effects of sample survey design on the accuracy of classification tree models in species distribution models
Edwards, T. C. J., Cutler, D. R., Zimmermann, N. E., Geiser, L., & Moisen, G. G. (2006). Effects of sample survey design on the accuracy of classification tree models in species distribution models. Ecological Modelling, 199(2), 132-141. https://doi.org/10.1016/j.ecolmodel.2006.05.016 |
| Prediction of biodiversity - regression of lichen species richness on remote sensing data
Waser, L. T., Stofer, S., Schwarz, M., Kuechler, M., Ivits, E., & Scheidegger, C. (2004). Prediction of biodiversity - regression of lichen species richness on remote sensing data. Community Ecology, 5(1), 121-133. https://doi.org/10.1556/ComEc.5.2004.1.12 |
| Lista Rossa delle specie minacciate in Svizzera. Licheni epifiti e terricoli
Scheidegger, C., Clerc, P., Dietrich, M., Frei, M., Groner, U., Keller, C., … Vust, M. (2002). Lista Rossa delle specie minacciate in Svizzera. Licheni epifiti e terricoli. Ambiente - Esecuzione. Berna; Birmensdorf: Ufficio federale dell’ambiente, delle foreste e del paesaggio UFAFP; Istituto federale di ricerca WSL. |