Active Filters

  • (-) Keywords = metagenomics
Search Results 1 - 4 of 4
  • RSS Feed
Select Page
Shotgun metagenomics reveals distinct functional diversity and metabolic capabilities between 12 000-year-old permafrost and active layers on Muot da Barba Peider (Swiss Alps)
Perez-Mon, C., Qi, W., Vikram, S., Frossard, A., Makhalanyane, T., Cowan, D., & Frey, B. (2021). Shotgun metagenomics reveals distinct functional diversity and metabolic capabilities between 12 000-year-old permafrost and active layers on Muot da Barba Peider (Swiss Alps). Microbial Genomics, 7(4), 000558 (13 pp.). https://doi.org/10.1099/mgen.0.000558
Metaxa2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data
Bengtsson-Palme, J., Hartmann, M., Eriksson, K. M., Pal, C., Thorell, K., Larsson, D. G. J., & Nilsson, R. H. (2015). Metaxa2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Molecular Ecology Resources, 15(6), 1403-1414. https://doi.org/10.1111/1755-0998.12399
Declining diversity of egg-associated bacteria during development of naturally spawned whitefish embryos (<em>Coregonus</em> spp.)
Wilkins, L. G. E., Rogivue, A., Fumagalli, L., & Wedekind, C. (2015). Declining diversity of egg-associated bacteria during development of naturally spawned whitefish embryos (Coregonus spp.). Aquatic Sciences, 77(3), 481-497. https://doi.org/10.1007/s00027-015-0392-9
Megraft: a software package to graft ribosomal small subunit (<I>16S/18S</I>) fragments onto full-length sequences for accurate species richness and sequencing depth analysis in pyrosequencing-length metagenomes and similar environmental datasets
Bengtsson, J., Hartmann, M., Unterseher, M., Vaishampayan, P., Abarenkov, K., Durso, L., … Nilsson, R. H. (2012). Megraft: a software package to graft ribosomal small subunit (16S/18S) fragments onto full-length sequences for accurate species richness and sequencing depth analysis in pyrosequencing-length metagenomes and similar environmental datasets. Research in Microbiology, 163(6-7), 407-412. https://doi.org/10.1016/j.resmic.2012.07.001