Active Filters

  • (-) Keywords = microsatellites
Search Results 1 - 20 of 37
Select Page
Evaluating methodologies for species delimitation: the mismatch between phenotypes and genotypes in lichenized fungi (<i>Bryoria</i> sect. <i>Implexae</i>, <i>Parmeliaceae</i>)
Boluda, C. G., Rico, V. J., Divakar, P. K., Nadyeina, O., Myllys, L., McMullin, R. T., … Hawksworth, D. L. (2019). Evaluating methodologies for species delimitation: the mismatch between phenotypes and genotypes in lichenized fungi (Bryoria sect. Implexae, Parmeliaceae). Persoonia, 42, 75-100. https://doi.org/10.3767/persoonia.2019.42.04
Microsatellite based genetic diversity of the widespread epiphytic lichen &lt;em&gt;Usnea subfloridana&lt;/em&gt; (Parmeliaceae, Ascomycota) in Estonia: comparison of populations from the mainland and an island
Degtjarenko, P., Jüriado, I., Mandel, T., Tõrra, T., Saag, A., Scheidegger, C., & Randlane, T. (2019). Microsatellite based genetic diversity of the widespread epiphytic lichen Usnea subfloridana (Parmeliaceae, Ascomycota) in Estonia: comparison of populations from the mainland and an island. MycoKeys, 58, 27-45. https://doi.org/10.3897/mycokeys.58.36557
Genetic diversity and structure of the epiphytic foliose lichen &lt;em&gt;Lobaria&lt;/em&gt; &lt;em&gt;pindarensis&lt;/em&gt; in the Himalayas depends on elevation
Devkota, S., Chaudhary, R. P., Werth, S., & Scheidegger, C. (2019). Genetic diversity and structure of the epiphytic foliose lichen Lobaria pindarensis in the Himalayas depends on elevation. Fungal Ecology, 41, 245-255. https://doi.org/10.1016/j.funeco.2019.07.002
Deciphering the worldwide invasion of the Asian long-horned beetle: a recurrent invasion process from the native area together with a bridgehead effect
Javal, M., Lombaert, E., Tsykun, T., Courtin, C., Kerdelhué, C., Prospero, S., … Roux, G. (2019). Deciphering the worldwide invasion of the Asian long-horned beetle: a recurrent invasion process from the native area together with a bridgehead effect. Molecular Ecology, 28(5), 951-967. https://doi.org/10.1111/mec.15030
Unconstrained gene flow between populations of a widespread epiphytic lichen <i>Usnea subfloridana</i> (Parmeliaceae, Ascomycota) in Estonia
Degtjarenko, P., Tõrra, T., Mandel, T., Marmor, L., Saag, A., Scheidegger, C., & Randlane, T. (2018). Unconstrained gene flow between populations of a widespread epiphytic lichen Usnea subfloridana (Parmeliaceae, Ascomycota) in Estonia. Fungal Biology, 122(8), 731-737. https://doi.org/10.1016/j.funbio.2018.03.013
The phylogeographic structure of <i>Arabis alpina</i> in the Alps shows consistent patterns across different types of molecular markers and geographic scales
Rogivue, A., Graf, R., Parisod, C., Holderegger, R., & Gugerli, F. (2018). The phylogeographic structure of Arabis alpina in the Alps shows consistent patterns across different types of molecular markers and geographic scales. Alpine Botany, 128(1), 35-45. https://doi.org/10.1007/s00035-017-0196-8
Minimal effects on genetic structuring of a fungus-dwelling saproxylic beetle after recolonisation of a restored forest
Zytynska, S. E., Doerfler, I., Gossner, M. M., Sturm, S., Weisser, W. W., & Müller, J. (2018). Minimal effects on genetic structuring of a fungus-dwelling saproxylic beetle after recolonisation of a restored forest. Journal of Applied Ecology, 55(6), 2933-2943. https://doi.org/10.1111/1365-2664.13160
Estimating genomic diversity and population differentiation – an empirical comparison of microsatellite and SNP variation in <I>Arabidopsis halleri</I>
Fischer, M. C., Rellstab, C., Leuzinger, M., Roumet, M., Gugerli, F., Shimizu, K. K., … Widmer, A. (2017). Estimating genomic diversity and population differentiation – an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics, 18, 69 (15 pp.). https://doi.org/10.1186/s12864-016-3459-7
Werkzeugkasten für genetische Methoden in der Biodiversitätsförderung
Meier, R., & Stapfer, A. (2017). Werkzeugkasten für genetische Methoden in der Biodiversitätsförderung. In D. Csencsics & F. Gugerli (Eds.), WSL Berichte. Naturschutzgenetik (pp. 49-56). Birmensdorf: Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL.
Origin of natural regeneration of black poplar (<I>Populus nigra</I> L.) and co-occurrence with hybrid poplar offspring
Csencsics, D., & Holderegger, R. (2016). Origin of natural regeneration of black poplar (Populus nigra L.) and co-occurrence with hybrid poplar offspring. Flora, 222, 20-26. https://doi.org/10.1016/j.flora.2016.03.009
Impact of alkaline dust pollution on genetic variation of <I>Usnea subfloridana</I> populations
Degtjarenko, P., Marmor, L., Tõrra, T., Lerch, M., Saag, A., Randlane, T., & Scheidegger, C. (2016). Impact of alkaline dust pollution on genetic variation of Usnea subfloridana populations. Fungal Biology, 120(10), 1165-1174. https://doi.org/10.1016/j.funbio.2016.05.010
Multiple mating events and spermatia-mediated gene flow in the lichen-forming fungus <I>Lobaria pulmonaria</I>
Keller, C., & Scheidegger, C. (2016). Multiple mating events and spermatia-mediated gene flow in the lichen-forming fungus Lobaria pulmonaria. Herzogia, 29(2), 435-450. https://doi.org/10.13158/heia.29.2.2016.435
Genetic population structure of the invasive ash dieback pathogen <i>Hymenoscyphus fraxineus</i> in its expanding range
Burokiene, D., Prospero, S., Jung, E., Marciulyniene, D., Moosbrugger, K., Norkute, G., … Schoebel, C. N. (2015). Genetic population structure of the invasive ash dieback pathogen Hymenoscyphus fraxineus in its expanding range. Biological Invasions, 17(9), 2743-2756. https://doi.org/10.1007/s10530-015-0911-6
Highly polymorphic microsatellite markers in <i>Pulsatilla vulgaris</i> (Ranunculaceae) using next-generation sequencing
DiLeo, M. F., Graf, R., Holderegger, R., Rico, Y., & Wagner, H. H. (2015). Highly polymorphic microsatellite markers in Pulsatilla vulgaris (Ranunculaceae) using next-generation sequencing. Applications in Plant Sciences, 3(7), 1500031 (3 pp.). https://doi.org/10.3732/apps.1500031
Relative reproductive success of co-infecting parasite genotypes under intensified within-host competition
Seppälä, O., Louhic, K. R., Karvonen, A., Rellstab, C., & Jokela, J. (2015). Relative reproductive success of co-infecting parasite genotypes under intensified within-host competition. Infection, Genetics and Evolution, 36, 450-455. https://doi.org/10.1016/j.meegid.2015.08.015
Characterization of microsatellite loci in the Himalayan lichen fungus <i>Lobaria Pindarensis</i> (Lobariaceae)
Devkota, S., Cornejo, C., Werth, S., Chaudhary, R. P., & Scheidegger, C. (2014). Characterization of microsatellite loci in the Himalayan lichen fungus Lobaria Pindarensis (Lobariaceae). Applications in Plant Sciences, 2(5), 1300101 (4 pp.). https://doi.org/10.3732/apps.1300101
Characterization of microsatellite loci in lichen-forming fungi of <i>Bryoria</i> section <i>Implexae</i> (Parmeliaceae)
Nadyeina, O., Cornejo, C., Boluda, C. G., Myllys, L., Rico, V. J., Crespo, A., & Scheidegger, C. (2014). Characterization of microsatellite loci in lichen-forming fungi of Bryoria section Implexae (Parmeliaceae). Applications in Plant Sciences, 2(7), 1400037 (4 pp.). https://doi.org/10.3732/apps.1400037
Characterization of fungus-specific microsatellite markers in the lichen fungusi <i>Usnea subfloridana</i> (Parmeliaceae)
Tõrra, T., Cornejo, C., Cheenacharoen, S., Dal Grande, F., Marmor, L., & Scheidegger, C. (2014). Characterization of fungus-specific microsatellite markers in the lichen fungusi Usnea subfloridana (Parmeliaceae). Applications in Plant Sciences, 2(7), 1400034 (3 pp.). https://doi.org/10.3732/apps.1400034
Prevalence of infection as a predictor of multiple genotype infection frequency in parasites with multiple-host life cycle
Louhi, K. R., Karvonen, A., Rellstab, C., Louhi, R., & Jokela, J. (2013). Prevalence of infection as a predictor of multiple genotype infection frequency in parasites with multiple-host life cycle. Journal of Animal Ecology, 82(1), 191-200. https://doi.org/10.1111/j.1365-2656.2012.02028.x
Discovery of a new gene pool and a high genetic diversity of the chestnut blight fungus <i>Cryphonectria parasitica</i> in Caucasian Georgia
Prospero, S., Lutz, A., Tavadze, B., Supatashvili, A., & Rigling, D. (2013). Discovery of a new gene pool and a high genetic diversity of the chestnut blight fungus Cryphonectria parasitica in Caucasian Georgia. Infection, Genetics and Evolution, 20, 131-139. https://doi.org/10.1016/j.meegid.2013.08.009