Active Filters

  • (-) Keywords = phylogeny
Search Results 1 - 20 of 31
Select Page
A new species of <em>Sabuloglossum</em> (Geoglossaceae, Ascomycota) from montane areas
Kučera, V., Slovák, M., Janošík, L., & Beenken, L. (2022). A new species of Sabuloglossum (Geoglossaceae, Ascomycota) from montane areas. Plant Biosystems. https://doi.org/10.1080/11263504.2021.2020353
The effect of niche filtering on plant species abundance in temperate grassland communities
Padullés Cubino, J., Axmanová, I., Lososová, Z., Večeřa, M., Bergamini, A., Bruelheide, H., … Chytrý, M. (2022). The effect of niche filtering on plant species abundance in temperate grassland communities. Functional Ecology, 36(4), 962-973. https://doi.org/10.1111/1365-2435.13994
Molecular characterization and phylogenetic analyses of <em>Lophodermella</em> needle pathogens (Rhytismataceae) on <em>Pinus</em> species in the USA and Europe
Ata, J. P., Burns, K. S., Marchetti, S., Munck, I. A., Beenken, L., Worrall, J. J., & Stewart, J. E. (2021). Molecular characterization and phylogenetic analyses of Lophodermella needle pathogens (Rhytismataceae) on Pinus species in the USA and Europe. PeerJ, 9, e11435 (25 pp.). https://doi.org/10.7717/peerj.11435
Traits mediate niches and co-occurrences of forest beetles in ways that differ among bioclimatic regions
Burner, R. C., Stephan, J. G., Drag, L., Birkemoe, T., Muller, J., Snäll, T., … Sverdrup-Thygeson, A. (2021). Traits mediate niches and co-occurrences of forest beetles in ways that differ among bioclimatic regions. Journal of Biogeography, 48(12), 3145-3157. https://doi.org/10.1111/jbi.14272
<em>Cryphonectria carpinicola</em> sp. nov. Associated with hornbeam decline in Europe
Cornejo, C., Hauser, A., Beenken, L., Cech, T., & Rigling, D. (2021). Cryphonectria carpinicola sp. nov. Associated with hornbeam decline in Europe. Fungal Biology, 125(5), 347-356. https://doi.org/10.1016/j.funbio.2020.11.012
Taxonomic study of <em>Hypotrachyna</em> subg. <em>Everniastrum</em> (Hale Ex Sipman) Divakar, A.Crespo, Sipman, Elix &amp; Lumbsch (Ascomycota) from China
Wang, X. Y., Zhang, Y. Y., Liu, D., Li, L. J., Yang, M. X., Yin, A. C., & Wang, L. S. (2020). Taxonomic study of Hypotrachyna subg. Everniastrum (Hale Ex Sipman) Divakar, A.Crespo, Sipman, Elix & Lumbsch (Ascomycota) from China. Cryptogamie, Mycologie, 41(12), 193-209. https://doi.org/10.5252/cryptogamie-mycologie2020v41a12
Disentangling evolutionary, environmental and morphological drivers of plant anatomical adaptations to drought and cold in Himalayan graminoids
Dolezal, J., Klimes, A., Dvorsky, M., Riha, P., Klimesova, J., & Schweingruber, F. (2019). Disentangling evolutionary, environmental and morphological drivers of plant anatomical adaptations to drought and cold in Himalayan graminoids. Oikos, 128(11), 1576-1587. https://doi.org/10.1111/oik.06451
New species and records of <i>Pyxine</i> (Caliciaceae) in China
Yang, M. X., Wang, X. Y., Liu, D., Zhang, Y. Y., Li, L. J., Yin, A. C., … Wang, L. S. (2019). New species and records of Pyxine (Caliciaceae) in China. MycoKeys, 45, 93-109. https://doi.org/10.3897/mycokeys.45.29374
End of an enigma: <i>Aenigmopteris</i> belongs in <i>Tectaria</i> (Tectariaceae: Polypodiopsida)
Chen, C. ‑W., Rothfels, C. J., Mustapeng, A. M. A., Gubilil, M., Karger, D. N., Kessler, M., & Huang, Y. ‑M. (2018). End of an enigma: Aenigmopteris belongs in Tectaria (Tectariaceae: Polypodiopsida). Journal of Plant Research, 131(1), 67-76. https://doi.org/10.1007/s10265-017-0966-9
&lt;em&gt;Cryptodiscus muriformis&lt;/em&gt; and &lt;em&gt;Schizoxylon gilenstamii&lt;/em&gt;, two new species of Stictidaceae (Ascomycota)
Fernández-Brime, S., Olariaga, I., Baral, H. O., Friebes, G., Jaklitsch, W., Senn-Irlet, B., & Wedin, M. (2018). Cryptodiscus muriformis and Schizoxylon gilenstamii, two new species of Stictidaceae (Ascomycota). Mycological Progress, 17(1-2), 295-305. https://doi.org/10.1007/s11557-017-1363-4
<em>TreeSimGM</em>: Simulating phylogenetic trees under general Bellman–Harris models with lineage-specific shifts of speciation and extinction in R
Hagen, O., & Stadler, T. (2018). TreeSimGM: Simulating phylogenetic trees under general Bellman–Harris models with lineage-specific shifts of speciation and extinction in R. Methods in Ecology and Evolution, 9(3), 754-760. https://doi.org/10.1111/2041-210X.12917
Environmental variation is a major predictor of global trait turnover in mammals
Holt, B. G., Costa, G. C., Penone, C., Lessard, J. P., Brooks, T. M., Davidson, A. D., … Graham, C. H. (2018). Environmental variation is a major predictor of global trait turnover in mammals. Journal of Biogeography, 45(1), 225-237. https://doi.org/10.1111/jbi.13091
Ecological controls of mammalian diversification vary with phylogenetic scale
Machac, A., Graham, C. H., & Storch, D. (2018). Ecological controls of mammalian diversification vary with phylogenetic scale. Global Ecology and Biogeography, 27(1), 32-46. https://doi.org/10.1111/geb.12642
Three new cyanobacterial species of <i>Lobaria</i> (Lobariaceae, Peltigerales) from the Hengduan Mountains, China
Miao, C. C., Wang, X. Y., Scheidegger, C., Wang, L. S., & Zhao, Z. T. (2018). Three new cyanobacterial species of Lobaria (Lobariaceae, Peltigerales) from the Hengduan Mountains, China. Mycosystema, 37(7), 838-848. https://doi.org/10.13346/j.mycosystema.180018
Molecular phylogeny and morphology of <em>Pseudomallada</em> (Neuroptera: Chrysopidae), one of the largest genera within Chrysopidae
Duelli, P., Henry, C. S., Hayashi, M., Nomura, M., & Mochizuki, A. (2017). Molecular phylogeny and morphology of Pseudomallada (Neuroptera: Chrysopidae), one of the largest genera within Chrysopidae. Zoological Journal of the Linnean Society, 180(3), 556-569. https://doi.org/10.1093/zoolinnean/zlw008
Does plant phylogenetic diversity increase invertebrate herbivory in managed grasslands?
Egorov, E., Gossner, M. M., Meyer, S. T., Weisser, W. W., & Brändle, M. (2017). Does plant phylogenetic diversity increase invertebrate herbivory in managed grasslands? Basic and Applied Ecology, 20, 40-50. https://doi.org/10.1016/j.baae.2017.03.004
Historical museum specimens reveal the loss of genetic and morphological diversity due to local extinctions in the endangered water chestnut <em>Trapa natans</em> L. (Lythraceae) from the southern Alpine lake area
Frey, D., Reisch, C., Narduzzi-Wicht, B., Baur, E. M., Cornejo, C., Alessi, M., & Schoenenberger, N. (2017). Historical museum specimens reveal the loss of genetic and morphological diversity due to local extinctions in the endangered water chestnut Trapa natans L. (Lythraceae) from the southern Alpine lake area. Botanical Journal of the Linnean Society, 185, 343-358. https://doi.org/10.1093/botlinnean/box061
Fossils matter: improved estimates of divergence times in <I>Pinus reveal</I> older diversification
Saladin, B., Leslie, A. B., Wüest, R. O., Litsios, G., Conti, E., Salamin, N., & Zimmermann, N. E. (2017). Fossils matter: improved estimates of divergence times in Pinus reveal older diversification. BMC Evolutionary Biology, 17(1), 95 (15 pp.). https://doi.org/10.1186/s12862-017-0941-z
Phylogeny and the prediction of tree functional diversity across novel continental settings
Swenson, N. G., Weiser, M. D., Mao, L. F., Araújo, M. B., Diniz-Filho, J. A. F., Kollmann, J., … Svenning, J. C. (2017). Phylogeny and the prediction of tree functional diversity across novel continental settings. Global Ecology and Biogeography, 26(5), 553-562. https://doi.org/10.1111/geb.12559
Multi-gene phylogeny of the genus Lobaria: Evidence of species-pair and allopatric cryptic speciation in East Asia
Cornejo, C., & Scheidegger, C. (2015). Multi-gene phylogeny of the genus Lobaria: Evidence of species-pair and allopatric cryptic speciation in East Asia. American Journal of Botany, 102(12), 2058-2073. https://doi.org/10.3732/ajb.1500207