Active Filters

  • (-) Keywords = remote sensing
Search Results 1 - 20 of 71

Pages

  • RSS Feed
Select Page
Reversed surface-mass-balance gradients on Himalayan debris-covered glaciers inferred from remote sensing
Bisset, R. R., Dehecq, A., Goldberg, D. N., Huss, M., Bingham, R. G., & Gourmelen, N. (2020). Reversed surface-mass-balance gradients on Himalayan debris-covered glaciers inferred from remote sensing. Remote Sensing, 12(10), 1563 (19 pp.). https://doi.org/10.3390/rs12101563
Determining forest parameters for avalanche simulation using remote sensing data
Brožová, N., Fischer, J. T., Bühler, Y., Bartelt, P., & Bebi, P. (2020). Determining forest parameters for avalanche simulation using remote sensing data. Cold Regions Science and Technology, 172, 102976 (11 pp.). https://doi.org/10.1016/j.coldregions.2019.102976
Large‐scale early‐wilting response of Central European forests to the 2018 extreme drought
Brun, P., Psomas, A., Ginzler, C., Thuiller, W., Zappa, M., & Zimmermann, N. E. (2020). Large‐scale early‐wilting response of Central European forests to the 2018 extreme drought. Global Change Biology, 26, 7021-7035. https://doi.org/10.1111/gcb.15360
Local habitat measures derived from aerial pictures are not strong predictors of amphibian occurrence or abundance
Cruickshank, S. S., Schmidt, B. R., Ginzler, C., & Bergamini, A. (2020). Local habitat measures derived from aerial pictures are not strong predictors of amphibian occurrence or abundance. Basic and Applied Ecology, 45, 51-61. https://doi.org/10.1016/j.baae.2020.03.010
Can crown variables increase the generality of individual tree biomass equations?
Forrester, D. I., Dumbrell, I. C., Elms, S. R., Paul, K. I., Pinkard, E. A., Roxburgh, S. H., & Baker, T. G. (2020). Can crown variables increase the generality of individual tree biomass equations? Trees: Structure and Function. https://doi.org/10.1007/s00468-020-02006-6
Snow wetness retrieved from close-range L-band radiometry in the western Greenland ablation zone
Houtz, D., Naderpour, R., & Schwank, M. (2020). Snow wetness retrieved from close-range L-band radiometry in the western Greenland ablation zone. Journal of Glaciology. https://doi.org/10.1017/jog.2020.79
A research agenda for microclimate ecology in human-modified tropical forests
Jucker, T., Jackson, T. D., Zellweger, F., Swinfield, T., Gregory, N., Williamson, J., … Coomes, D. A. (2020). A research agenda for microclimate ecology in human-modified tropical forests. Frontiers in Forests and Global Change, 2, 92 (11 pp.). https://doi.org/10.3389/ffgc.2019.00092
Toward snow cover estimation in mountainous areas using modern data assimilation methods: a review
Largeron, C., Dumont, M., Morin, S., Boone, A., Lafaysse, M., Metref, S., … Margulis, S. A. (2020). Toward snow cover estimation in mountainous areas using modern data assimilation methods: a review. Frontiers in Earth Science, 8, 325 (21 pp.). https://doi.org/10.3389/feart.2020.00325
Restoring steppe landscapes: patterns, drivers and implications in Russia’s steppes
Pazur, R., Prishchepov, A. V., Myachina, K., Verburg, P. H., Levykin, S., Ponkina, E. V., … Bürgi, M. (2020). Restoring steppe landscapes: patterns, drivers and implications in Russia’s steppes. Landscape Ecology. https://doi.org/10.1007/s10980-020-01174-7
Abandonment and recultivation of agricultural lands in Slovakia - patterns and determinants from the past to the future
Pazúr, R., Lieskovský, J., Bürgi, M., Müller, D., Lieskovský, T., Zhang, Z., & Prischchepov, A. V. (2020). Abandonment and recultivation of agricultural lands in Slovakia - patterns and determinants from the past to the future. Land, 9(9), 316 (22 pp.). https://doi.org/10.3390/land9090316
Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models
Randin, C. F., Ashcroft, M. B., Bolliger, J., Cavender-Bares, J., Coops, N. C., Dullinger, S., … Payne, D. (2020). Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment, 239, 111626 (18 pp.). https://doi.org/10.1016/j.rse.2019.111626
Towards comparable assessment of the soil nutrient status across scales - review and development of nutrient metrics
Van Sundert, K., Radujković, D., Cools, N., De Vos, B., Etzold, S., Fernández‐Martínez, M., … Vicca, S. (2020). Towards comparable assessment of the soil nutrient status across scales - review and development of nutrient metrics. Global Change Biology, 26(2), 392-409. https://doi.org/10.1111/gcb.14802
Grossflächige Klassifikation von Gebüschwald mit Fernerkundungsdaten
Weber, D., Rüetschi, M., Small, D., & Ginzler, C. (2020). Grossflächige Klassifikation von Gebüschwald mit Fernerkundungsdaten. Schweizerische Zeitschrift für Forstwesen, 171(2), 51-59. https://doi.org/10.3188/szf.2020.0051
Macroecology in the age of Big Data - where to go from here?
Wüest, R. O., Zimmermann, N. E., Zurell, D., Alexander, J. M., Fritz, S. A., Hof, C., … Karger, D. N. (2020). Macroecology in the age of Big Data - where to go from here? Journal of Biogeography, 47(1), 1-12. https://doi.org/10.1111/jbi.13633
Threatened and specialist species suffer from increased wood cover and productivity in Swiss steppes
Boch, S., Bedolla, A., Ecker, K. T., Ginzler, C., Graf, U., Küchler, H., … Bergamini, A. (2019). Threatened and specialist species suffer from increased wood cover and productivity in Swiss steppes. Flora, 258, 151444 (9 pp.). https://doi.org/10.1016/j.flora.2019.151444
Ecosystem service change caused by climatological and non‐climatological drivers: a Swiss case study
Braun, D., de Jong, R., Schaepman, M. E., Furrer, R., Hein, L., Kienast, F., & Damm, A. (2019). Ecosystem service change caused by climatological and non‐climatological drivers: a Swiss case study. Ecological Applications, 29(4), e01901 (11 pp.). https://doi.org/10.1002/eap.1901
Comparing aerial lidar observations with terrestrial lidar and snow‐probe transects from NASA's 2017 SnowEx campaign
Currier, W. R., Pflug, J., Mazzotti, G., Jonas, T., Deems, J. S., Bormann, K. J., … Lundquist, J. D. (2019). Comparing aerial lidar observations with terrestrial lidar and snow‐probe transects from NASA's 2017 SnowEx campaign. Water Resources Research, 55(7), 6285-6294. https://doi.org/10.1029/2018WR024533
Derivation and evaluation of a new extinction coefficient for use with the n-HUT snow emission model
Maslanka, W., Sandells, M., Gurney, R., Lemmetyinen, J., Leppanen, L., Kontu, A., … Kelly, R. (2019). Derivation and evaluation of a new extinction coefficient for use with the n-HUT snow emission model. IEEE Transactions on Geoscience and Remote Sensing, 57(10), 7406-7417. https://doi.org/10.1109/TGRS.2019.2913208
The dynamic habitat indices (DHIs) from MODIS and global biodiversity
Radeloff, V. C., Dubinin, M., Coops, N. C., Allen, A. M., Brooks, T. M., Clayton, M. K., … Hobi, M. L. (2019). The dynamic habitat indices (DHIs) from MODIS and global biodiversity. Remote Sensing of Environment, 222, 204-214. https://doi.org/10.1016/j.rse.2018.12.009
Supraglacial ice cliffs and ponds on debris-covered glaciers: spatio-temporal distribution and characteristics
Steiner, J. F., Buri, P., Miles, E. S., Ragettli, S., & Pellicciotti, F. (2019). Supraglacial ice cliffs and ponds on debris-covered glaciers: spatio-temporal distribution and characteristics. Journal of Glaciology, 65(252), 617-632. https://doi.org/10.1017/jog.2019.40
 

Pages