Active Filters

  • (-) Keywords = sampling design
Search Results 1 - 11 of 11
  • RSS Feed
Select Page
Notes towards an optimal sampling strategy in dendrockimatology
Kirdyanov, A. V., Piermattei, A., Kolář, T., Rybníček, M., Krusic, P. J., Nikolaev, A. N., … Büntgen, U. (2018). Notes towards an optimal sampling strategy in dendrockimatology. Dendrochronologia, 52, 162-166. https://doi.org/10.1016/j.dendro.2018.10.002
Non-invasive genetic population density estimation of mountain hares (<em>Lepus timidus</em>) in the Alps: systematic or opportunistic sampling?
Rehnus, M., & Bollmann, K. (2016). Non-invasive genetic population density estimation of mountain hares (Lepus timidus) in the Alps: systematic or opportunistic sampling? European Journal of Wildlife Research, 62(6), 737-747. https://doi.org/10.1007/s10344-016-1053-6
Scale decisions can reverse conclusions on community assembly processes
Münkemüller, T., Gallien, L., Lavergne, S., Renaud, J., Roquet, C., Abdulhak, S., … Thuiller, W. (2014). Scale decisions can reverse conclusions on community assembly processes. Global Ecology and Biogeography, 23(6), 620-632. https://doi.org/10.1111/geb.12137
Complex national sampling design for long-term monitoring of protected dry grasslands in Switzerland
Tillé, Y., & Ecker, K. (2014). Complex national sampling design for long-term monitoring of protected dry grasslands in Switzerland. Environmental and Ecological Statistics, 21(3), 453-476. https://doi.org/10.1007/s10651-013-0263-2
Optimal sample sizes and allelic diversity in studies of the genetic variability of mycobiont and photobiont populations
Werth, S. (2011). Optimal sample sizes and allelic diversity in studies of the genetic variability of mycobiont and photobiont populations. Lichenologist, 43(1), 73-81. https://doi.org/10.1017/S0024282910000563
Applications of landscape genetics in conservation biology: concepts and challenges
Segelbacher, G., Cushman, S. A., Epperson, B. K., Fortin, M. J., Francois, O., Hardy, O. J., … Manel, S. (2010). Applications of landscape genetics in conservation biology: concepts and challenges. Conservation Genetics, 11(2), 375-385. https://doi.org/10.1007/s10592-009-0044-5
Predictive mapping of floristic site conditions across mire habitats: evaluating data requirements
Ecker, K., Küchler, M., Feldmeyer-Christe, E., Graf, U., & Waser, L. T. (2008). Predictive mapping of floristic site conditions across mire habitats: evaluating data requirements. Community Ecology, 9(2), 133-146. https://doi.org/10.1556/ComEc.9.2008.2.2
Approaches to Swiss mire monitoring
Grünig, A., Steiner, G. M., Ginzler, C., Graf, U., & Küchler, M. (2004). Approaches to Swiss mire monitoring. International Peat Journal, 12, 55-73.
Statistical design and analysis in long-term vegetation monitoring
Wildi, O. (2001). Statistical design and analysis in long-term vegetation monitoring. In C. A. Burga & A. Kratochwil (Eds.), Tasks for vegetation science: Vol. 35. Biomonitoring: general and applied aspects on regional and global scales (pp. 17-39). https://doi.org/10.1007/978-94-015-9686-2_2
Comparing sampling strategies in forest monitoring programs
Ghosh, S., & Innes, J. L. (1996). Comparing sampling strategies in forest monitoring programs. Forest Ecology and Management, 82(1-3), 231-238. https://doi.org/10.1016/0378-1127(95)03674-1
Sampling with multiple objectives and the role of spatial autocorrelation
Wildi, O. (1990). Sampling with multiple objectives and the role of spatial autocorrelation. Coenoses, 5(1), 51-60.