Active Filters

  • (-) Keywords = snow cover
Search Results 1 - 20 of 48
Select Page
Climate change disrupts the seasonal coupling of plant and soil microbial nutrient cycling in an alpine ecosystem
Broadbent, A. A. D., Newbold, L. K., Pritchard, W. J., Michas, A., Goodall, T., Cordero, I., … Bardgett, R. D. (2024). Climate change disrupts the seasonal coupling of plant and soil microbial nutrient cycling in an alpine ecosystem. Global Change Biology, 30(3), e17245 (14 pp.). https://doi.org/10.1111/gcb.17245
Remote sensing of mountain snow from space: status and recommendations
Gascoin, S., Luojus, K., Nagler, T., Lievens, H., Masiokas, M., Jonas, T., … De Rosnay, P. (2024). Remote sensing of mountain snow from space: status and recommendations. Frontiers in Earth Science, 12, 1381323 (9 pp.). https://doi.org/10.3389/feart.2024.1381323
Retrieval of ground, snow, and forest parameters from space borne passive L band observations. A case study over Sodankylä, Finland
Holmberg, M., Lemmetyinen, J., Schwank, M., Kontu, A., Rautiainen, K., Merkouriadi, I., & Tamminen, J. (2024). Retrieval of ground, snow, and forest parameters from space borne passive L band observations. A case study over Sodankylä, Finland. Remote Sensing of Environment, 306, 114143 (20 pp.). https://doi.org/10.1016/j.rse.2024.114143
Sublimation of snow
Lundquist, J. D., Vano, J., Gutmann, E., Hogan, D., Schwat, E., Haugeneder, M., … Carver, L. (2024). Sublimation of snow. Bulletin of the American Meteorological Society, 105(6), E975-E990. https://doi.org/10.1175/BAMS-D-23-0191.1
Measuring changes in snowpack SWE continuously on a landscape scale using lake water pressure
Pritchard, H. D., Farinotti, D., & Colwell, S. (2021). Measuring changes in snowpack SWE continuously on a landscape scale using lake water pressure. Journal of Hydrometeorology, 22(4), 795-811. https://doi.org/10.1175/JHM-D-20-0206.1
Changes in climatology, snow cover, and ground temperatures at high alpine locations
Bender, E., Lehning, M., & Fiddes, J. (2020). Changes in climatology, snow cover, and ground temperatures at high alpine locations. Frontiers in Earth Science, 8, 100 (17 pp.). https://doi.org/10.3389/feart.2020.00100
How rock glacier hydrology, deformation velocities and ground temperatures interact: examples from the Swiss Alps
Kenner, R., Pruessner, L., Beutel, J., Limpach, P., & Phillips, M. (2020). How rock glacier hydrology, deformation velocities and ground temperatures interact: examples from the Swiss Alps. Permafrost and Periglacial Processes, 31(1), 3-14. https://doi.org/10.1002/ppp.2023
On the birth of structural and crystallographic fabric signals in polar snow: a case study from the EastGRIP snowpack
Montagnat, M., Löwe, H., Calonne, N., Schneebeli, M., Matzl, M., & Jaggi, M. (2020). On the birth of structural and crystallographic fabric signals in polar snow: a case study from the EastGRIP snowpack. Frontiers in Earth Science, 8, 365 (15 pp.). https://doi.org/10.3389/feart.2020.00365
Monitoring spatial and temporal differences in Andean snow depth derived from satellite tri-stereo photogrammetry
Shaw, T. E., Deschamps-Berger, C., Gascoin, S., & McPhee, J. (2020). Monitoring spatial and temporal differences in Andean snow depth derived from satellite tri-stereo photogrammetry. Frontiers in Earth Science, 8, 579142 (16 pp.). https://doi.org/10.3389/feart.2020.579142
Projections of Alpine snow-cover in a high-resolution climate simulation
Lüthi, S., Ban, N., Kotlarski, S., Steger, C. R., Jonas, T., & Schär, C. (2019). Projections of Alpine snow-cover in a high-resolution climate simulation. Atmosphere, 10(8), 463 (18 pp.). https://doi.org/10.3390/atmos10080463
Small and transient response of winter soil respiration and microbial communities to altered snow depth in a mid-temperate forest
Gao, D., Hagedorn, F., Zhang, L., Liu, J., Qu, G., Sun, J., … Bai, E. (2018). Small and transient response of winter soil respiration and microbial communities to altered snow depth in a mid-temperate forest. Applied Soil Ecology, 130, 40-49. https://doi.org/10.1016/j.apsoil.2018.05.010
Unchanged risk of frost exposure for subalpine and alpine plants after snowmelt in Switzerland despite climate warming
Klein, G., Rebetez, M., Rixen, C., & Vitasse, Y. (2018). Unchanged risk of frost exposure for subalpine and alpine plants after snowmelt in Switzerland despite climate warming. International Journal of Biometeorology, 62(9), 1755-1762. https://doi.org/10.1007/s00484-018-1578-3
Comparing two methods of artificial avalanche triggering: gas vs. solid explosives
Simioni, S., & Schweizer, J. (2018). Comparing two methods of artificial avalanche triggering: gas vs. solid explosives. In International snow science workshop proceedings 2018 (pp. 158-161).
New insights on permafrost genesis and conservation in talus slopes based on observations at Flüelapass, Eastern Switzerland
Kenner, R., Phillips, M., Hauck, C., Hilbich, C., Mulsow, C., Bühler, Y., … Buchroithner, M. (2017). New insights on permafrost genesis and conservation in talus slopes based on observations at Flüelapass, Eastern Switzerland. Geomorphology, 290, 101-113. https://doi.org/10.1016/j.geomorph.2017.04.011
Hydrological significance of soil frost for pre-alpine areas
Stähli, M. (2017). Hydrological significance of soil frost for pre-alpine areas. Journal of Hydrology, 546, 90-102. https://doi.org/10.1016/j.jhydrol.2016.12.032
Characterizing snow stratigraphy: a comparison of SP2, SnowMicroPen, Ramsonde and hand hardness profiles
Pielmeier, C., & Van Herwijnen, A. (2016). Characterizing snow stratigraphy: a comparison of SP2, SnowMicroPen, Ramsonde and hand hardness profiles. In ISSW proceedings. International snow science workshop proceedings 2016 (pp. 578-584).
Sensitivity of Alpine3D modeled snow cover to modifications in DEM resolution, station coverage and meteorological input quantities
Schlögl, S., Marty, C., Bavay, M., & Lehning, M. (2016). Sensitivity of Alpine3D modeled snow cover to modifications in DEM resolution, station coverage and meteorological input quantities. Environmental Modelling and Software, 83, 387-396. https://doi.org/10.1016/j.envsoft.2016.02.017
Validation of and comparison between a semidistributed rainfall-runoff hydrological model (PREVAH) and a spatially distributed snow-evolution model (SnowModel) for snow cover prediction in moutain ecosy stems
Randin, C. F., Dedieu, J. P., Zappa, M., Long, L., & Dullinger, S. (2015). Validation of and comparison between a semidistributed rainfall-runoff hydrological model (PREVAH) and a spatially distributed snow-evolution model (SnowModel) for snow cover prediction in moutain ecosy stems. Ecohydrology, 8(7), 1181-1193. https://doi.org/10.1002/eco.1570
Snow cover, freeze-thaw, and the retention of nutrients in an oceanic mountain ecosystem
Wipf, S., Sommerkorn, M., Stutter, M. I., Wubs, E. R. J., & van der Wal, R. (2015). Snow cover, freeze-thaw, and the retention of nutrients in an oceanic mountain ecosystem. Ecosphere, 6(10), 207 (16 pp.). https://doi.org/10.1890/ES15-00099.1
The systematic snow cover analysis: a practical tool for interpreting and assessing slope stability
Kronthaler, G., & Mitterer, C. (2014). The systematic snow cover analysis: a practical tool for interpreting and assessing slope stability. In ISSW proceedings. International snow science workshop proceedings 2014 (pp. 772-775).