Active Filters

  • (-) Keywords = snow
  • (-) WSL Research Units ≠ Snow and Atmosphere
  • (-) WSL Authors ≠ Bebi, Peter
Search Results 1 - 20 of 61

Pages

  • RSS Feed
Select Page
Glide-snow avalanche characteristics at different timescales extracted from time-lapse photography
Fees, A., van Herwijnen, A., Altenbach, M., Lombardo, M., & Schweizer, J. (2023). Glide-snow avalanche characteristics at different timescales extracted from time-lapse photography. Annals of Glaciology. https://doi.org/10.1017/aog.2023.37
Stress measurements in the snowpack during compression tests
Griesser, S., Pielmeier, C., & Reiweger, I. (2023). Stress measurements in the snowpack during compression tests. In ISSW proceedings. International snow science workshop proceedings 2023 (pp. 478-480).
Stress measurements in the weak layer during snow stability tests
Griesser, S., Pielmeier, C., Boutera Toft, H., & Reiweger, I. (2023). Stress measurements in the weak layer during snow stability tests. Annals of Glaciology. https://doi.org/10.1017/aog.2023.49
Automated prediction of wet-snow avalanche activity in the Swiss Alps
Hendrick, M., Techel, F., Volpi, M., Olevski, T., Pérez-Guillén, C., van Herwijnen, A., & Schweizer, J. (2023). Automated prediction of wet-snow avalanche activity in the Swiss Alps. Journal of Glaciology, 69(277), 1365-1378. https://doi.org/10.1017/jog.2023.24
A method for imaging water transport in soil-snow systems with neutron radiography
Lombardo, M., Lehmann, P., Kaestner, A., Fees, A., van Herwijnen, A., & Schweizer, J. (2023). A method for imaging water transport in soil-snow systems with neutron radiography. Annals of Glaciology. https://doi.org/10.1017/aog.2023.65
Can big data and random forests improve avalanche runout estimation compared to simple linear regression?
Toft, H. B., Müller, K., Hendrikx, J., Jaedicke, C., & Bühler, Y. (2023). Can big data and random forests improve avalanche runout estimation compared to simple linear regression? Cold Regions Science and Technology, 211, 103844 (17 pp.). https://doi.org/10.1016/j.coldregions.2023.103844
Crack propagation speeds in weak snowpack layers
Bergfeld, B., Van Herwijnen, A., Bobillier, G., Larose, E., Moreau, L., Trottet, B., … Schweizer, J. (2022). Crack propagation speeds in weak snowpack layers. Journal of Glaciology, 68(269), 557-570. https://doi.org/10.1017/jog.2021.118
Modelling snowpack stability from simulated snow stratigraphy: summary and implementation examples
Viallon-Galinier, L., Hagenmuller, P., Reuter, B., & Eckert, N. (2022). Modelling snowpack stability from simulated snow stratigraphy: summary and implementation examples. Cold Regions Science and Technology, 201, 103596 (13 pp.). https://doi.org/10.1016/j.coldregions.2022.103596
Low-flow behavior of alpine catchments with varying quaternary cover under current and future climatic conditions
Arnoux, M., Brunner, P., Schaefli, B., Mott, R., Cochand, F., & Hunkeler, D. (2021). Low-flow behavior of alpine catchments with varying quaternary cover under current and future climatic conditions. Journal of Hydrology, 592, 125591 (15 pp.). https://doi.org/10.1016/j.jhydrol.2020.125591
Mapping avalanches with satellites - the vision of more complete avalanche datasets
Bühler, Y., Hafner, E., & Techel, F. (2021). Mapping avalanches with satellites - the vision of more complete avalanche datasets. In IEEE international geoscience and remote sensing symposium (IGARSS). 2021 IEEE international geoscience & remote sensing symposium. Proceedings (pp. 232-235). https://doi.org/10.1109/IGARSS47720.2021.9553577
Snow interception modelling: isolated observations have led to many land surface models lacking appropriate temperature sensitivities
Lundquist, J. D., Dickerson-Lange, S., Gutmann, E., Jonas, T., Lumbrazo, C., & Reynolds, D. (2021). Snow interception modelling: isolated observations have led to many land surface models lacking appropriate temperature sensitivities. Hydrological Processes, 35(7), e14274 (20 pp.). https://doi.org/10.1002/hyp.14274
Modeling spatially distributed snow instability at a regional scale using Alpine3D
Richter, B., Schweizer, J., Rotach, M. W., & Van Herwijnen, A. (2021). Modeling spatially distributed snow instability at a regional scale using Alpine3D. Journal of Glaciology, 67(266), 1147-1162. https://doi.org/10.1017/jog.2021.61
Effects of climate change on avalanche accidents and survival
Strapazzon, G., Schweizer, J., Chiambretti, I., Brodmann Maeder, M., Brugger, H., & Zafren, K. (2021). Effects of climate change on avalanche accidents and survival. Frontiers in Physiology, 12, 639433 (10 pp.). https://doi.org/10.3389/fphys.2021.639433
Aperture synthesis and calibration of the WBSCAT ground-based scatterometer
Werner, C., Frey, O., Naderpour, R., Wiesmann, A., Suess, M., & Wegmüller, U. (2021). Aperture synthesis and calibration of the WBSCAT ground-based scatterometer. In IEEE international geoscience and remote sensing symposium (IGARSS). 2021 IEEE international geoscience & remote sensing symposium. Proceedings (pp. 1947-1949). https://doi.org/10.1109/IGARSS47720.2021.9554592
Studying snow failure with fiber bundle models
Capelli, A., Reiweger, I., & Schweizer, J. (2020). Studying snow failure with fiber bundle models. Frontiers in Physics, 8, 236 (12 pp.). https://doi.org/10.3389/fphy.2020.00236
Editorial: About the relevance of snow microstructure study in cryospheric sciences
Montagnat, M., Chambon, G., Gaume, J., Hagenmuller, P., & Sandells, M. (2020). Editorial: About the relevance of snow microstructure study in cryospheric sciences. Frontiers in Earth Science, 8, 619509 (3 pp.). https://doi.org/10.3389/feart.2020.619509
Comparing aerial lidar observations with terrestrial lidar and snow‐probe transects from NASA's 2017 SnowEx campaign
Currier, W. R., Pflug, J., Mazzotti, G., Jonas, T., Deems, J. S., Bormann, K. J., … Lundquist, J. D. (2019). Comparing aerial lidar observations with terrestrial lidar and snow‐probe transects from NASA's 2017 SnowEx campaign. Water Resources Research, 55(7), 6285-6294. https://doi.org/10.1029/2018WR024533
Retrievals of snow properties over Greenland from L-band radiometry
Houtz, D., Naderpour, R., & Schwank, M. (2019). Retrievals of snow properties over Greenland from L-band radiometry. In 2019 IEEE international geoscience and remote aensing symposium. Proceedings (pp. 3990-3993). https://doi.org/10.1109/IGARSS.2019.8900366
Snow wetness and density retrieved from L-band satellite radiometer observations over a site in the West Greenland ablation zone
Houtz, D., Naderpour, R., Schwank, M., & Steffen, K. (2019). Snow wetness and density retrieved from L-band satellite radiometer observations over a site in the West Greenland ablation zone. Remote Sensing of Environment, 235, 111361 (15 pp.). https://doi.org/10.1016/j.rse.2019.111361
Numerical investigation of the mixed-mode failure of snow
Mulak, D., & Gaume, J. (2019). Numerical investigation of the mixed-mode failure of snow. Computational Particle Mechanics, 6, 439-447. https://doi.org/10.1007/s40571-019-00224-5
 

Pages