Active Filters

  • (-) Keywords = snow
Search Results 1 - 20 of 116

Pages

  • RSS Feed
Select Page
A casting method using contrast-enhanced diethylphthalate for micro-computed tomography of snow
Lombardo, M., Schneebeli, M., & Löwe, H. (2021). A casting method using contrast-enhanced diethylphthalate for micro-computed tomography of snow. Journal of Glaciology, 67(265), 847-861. https://doi.org/10.1017/jog.2021.35
A downscaling intercomparison study: the representation of slope- and ridge-scale processes in models of different complexity
Kruyt, B., Mott, R., Fiddes, J., Gerber, F., Sharma, V., & Reynolds, D. (2022). A downscaling intercomparison study: the representation of slope- and ridge-scale processes in models of different complexity. Frontiers in Earth Science, 10, 789332 (22 pp.). https://doi.org/10.3389/feart.2022.789332
A method for imaging water transport in soil-snow systems with neutron radiography
Lombardo, M., Lehmann, P., Kaestner, A., Fees, A., van Herwijnen, A., & Schweizer, J. (2023). A method for imaging water transport in soil-snow systems with neutron radiography. Annals of Glaciology. https://doi.org/10.1017/aog.2023.65
A new active/passive microwave radiative transfer model for snow (SMRT) to foster inter-comparisons of model components
Picard, G., Sandells, M., & Löwe, H. (2018). A new active/passive microwave radiative transfer model for snow (SMRT) to foster inter-comparisons of model components. In Observing, understandig and forecasting the dynamics of our planet (pp. 6276-6279). https://doi.org/10.1109/IGARSS.2018.8517407
A nonequilibrium treatment of heat and mass transfer in alpine snowcovers
Bartelt, P., Buser, O., & Sokratov, S. A. (2004). A nonequilibrium treatment of heat and mass transfer in alpine snowcovers. Cold Regions Science and Technology, 39(2-3), 219-242. https://doi.org/10.1016/j.coldregions.2004.04.005
A physical SNOWPACK model for the Swiss avalanche warning Part I: numerical model
Bartelt, P., & Lehning, M. (2002). A physical SNOWPACK model for the Swiss avalanche warning Part I: numerical model. Cold Regions Science and Technology, 35(3), 123-145. https://doi.org/10.1016/S0165-232x(02)00074-5
A quantile‐based approach to improve homogenization of snow depth time series
Resch, G., Koch, R., Marty, C., Chimani, B., Begert, M., Buchmann, M., … Schöner, W. (2023). A quantile‐based approach to improve homogenization of snow depth time series. International Journal of Climatology, 43(1), 157-173. https://doi.org/10.1002/joc.7742
A short and personal history of snow avalanche dynamics
Salm, B. (2004). A short and personal history of snow avalanche dynamics. Cold Regions Science and Technology, 39(2-3), 83-92. https://doi.org/10.1016/j.coldregions.2004.06.004
Acoustic emission signatures prior to snow failure
Capelli, A., Reiweger, I., & Schweizer, J. (2018). Acoustic emission signatures prior to snow failure. Journal of Glaciology, 64(246), 543-554. https://doi.org/10.1017/jog.2018.43
Aerodynamic roughness length of fresh snow
Gromke, C., Manes, C., Walter, B., Lehning, M., & Guala, M. (2011). Aerodynamic roughness length of fresh snow. Boundary-Layer Meteorology, 141(1), 21-34. https://doi.org/10.1007/s10546-011-9623-3
Analysis of local ice crystal growth in snow
Krol, Q., & Löwe, H. (2016). Analysis of local ice crystal growth in snow. Journal of Glaciology, 62(232), 378-390. https://doi.org/10.1017/jog.2016.32
Aperture synthesis and calibration of the WBSCAT ground-based scatterometer
Werner, C., Frey, O., Naderpour, R., Wiesmann, A., Suess, M., & Wegmüller, U. (2021). Aperture synthesis and calibration of the WBSCAT ground-based scatterometer. In IEEE international geoscience and remote sensing symposium (IGARSS). 2021 IEEE international geoscience & remote sensing symposium. Proceedings (pp. 1947-1949). https://doi.org/10.1109/IGARSS47720.2021.9554592
Application of capacitance instrumentation to the measurement of density and velocity of flowing snow
Louge, M. Y., Steiner, R., Keast, S. C., Decker, R., Dent, J., & Schneebeli, M. (1997). Application of capacitance instrumentation to the measurement of density and velocity of flowing snow. Cold Regions Science and Technology, 25(1), 47-63. https://doi.org/10.1016/S0165-232X(96)00016-X
Application of statistical and hydraulic-continuum dense-snow avalanche models to five real European sites
Barbolini, M., Gruber, U., Keylock, C. J., Naaim, M., & Savi, F. (2000). Application of statistical and hydraulic-continuum dense-snow avalanche models to five real European sites. Cold Regions Science and Technology, 31(2), 133-149. https://doi.org/10.1016/S0165-232X(00)00008-2
Automated identification of forest with protective function against snow avalanches in the Trento province (Italy)
Monti, F., Alberti, R., Comin, P., Wolynski, A., Vallata, L., & Bühler, Y. (2018). Automated identification of forest with protective function against snow avalanches in the Trento province (Italy). In International snow science workshop proceedings 2018 (pp. 731-735).
Automated prediction of wet-snow avalanche activity in the Swiss Alps
Hendrick, M., Techel, F., Volpi, M., Olevski, T., Pérez-Guillén, C., van Herwijnen, A., & Schweizer, J. (2023). Automated prediction of wet-snow avalanche activity in the Swiss Alps. Journal of Glaciology, 69(277), 1365-1378. https://doi.org/10.1017/jog.2023.24
Automatic grain type classification of snow micro penetrometer signals with random forests
Havens, S., Marshall, H. P., Pielmeier, C., & Elder, K. (2013). Automatic grain type classification of snow micro penetrometer signals with random forests. IEEE Transactions on Geoscience and Remote Sensing, 51(6), 3328-3335. https://doi.org/10.1109/TGRS.2012.2220549
Avalanche dynamics by Newton. Reply to comments on avalanche flow models based on the concept of random kinetic energy
Bartelt, P., & Buser, O. (2018). Avalanche dynamics by Newton. Reply to comments on avalanche flow models based on the concept of random kinetic energy. Journal of Glaciology, 64(243), 165-170. https://doi.org/10.1017/jog.2018.1
Breeding snow: an instrumented sample holder for simultaneous tomographic and thermal studies
Pinzer, B., & Schneebeli, M. (2009). Breeding snow: an instrumented sample holder for simultaneous tomographic and thermal studies. Measurement Science and Technology, 20(9), 095705 (9 pp.). https://doi.org/10.1088/0957-0233/20/9/095705
Calculation of dense snow avalanches in three-dimensional terrain with the numerical simulation programm RAMMS
Christen, M., Bartelt, P., Kowalski, J., & Stoffel, L. (2008). Calculation of dense snow avalanches in three-dimensional terrain with the numerical simulation programm RAMMS. In ISSW proceedings. International snow science workshop proceedings 2008 (pp. 709-716).
 

Pages