Active Filters

  • (-) Keywords = terrestrial laser scanning
Search Results 1 - 20 of 23
Select Page
Tree volume estimation with terrestrial laser scanning - Testing for bias in a 3D virtual environment
Abegg, M., Bösch, R., Kükenbrink, D., & Morsdorf, F. (2023). Tree volume estimation with terrestrial laser scanning - Testing for bias in a 3D virtual environment. Agricultural and Forest Meteorology, 331, 109348 (16 pp.). https://doi.org/10.1016/j.agrformet.2023.109348
Estimating forest above-ground biomass with terrestrial laser scanning: current status and future directions
Demol, M., Verbeeck, H., Gielen, B., Armston, J., Burt, A., Disney, M., … Calders, K. (2022). Estimating forest above-ground biomass with terrestrial laser scanning: current status and future directions. Methods in Ecology and Evolution, 13(8), 1628-1639. https://doi.org/10.1111/2041-210X.13906
Integrating recreation into National Forest Inventories – Results from a forest visitor survey in winter and summer
Hegetschweiler, K. T., Stride, C. B., Fischer, C., Ginzler, C., & Hunziker, M. (2022). Integrating recreation into National Forest Inventories – Results from a forest visitor survey in winter and summer. Journal of Outdoor Recreation and Tourism, 39, 100489 (12 pp.). https://doi.org/10.1016/j.jort.2022.100489
Monocular depth estimation in forest environments
Hristova, H., Abegg, M., Fischer, C., & Rehush, N. (2022). Monocular depth estimation in forest environments. In A. Yilmaz, J. D. Wegner, R. Qin, F. Remondino, T. Fuse, & I. Toschi (Eds.), The international archives of the photogrammetry, remote sensing and spatial information sciences: Vol. XLII-B2-2022. Congress "Imaging today, foreseeing tomorrow", commission II (pp. 1017-1023). https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1017-2022
Benchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest
Kükenbrink, D., Marty, M., Bösch, R., & Ginzler, C. (2022). Benchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest. International Journal of Applied Earth Observation and Geoinformation, 113, 102999 (15 pp.). https://doi.org/10.1016/j.jag.2022.102999
Water losses during technical snow production: results from field experiments
Grünewald, T., & Wolfsperger, F. (2019). Water losses during technical snow production: results from field experiments. Frontiers in Earth Science, 7, 78 (13 pp.). https://doi.org/10.3389/feart.2019.00078
Assessing understory complexity in beech-dominated forests (<i>Fagus sylvatica</i> L.) in Central Europe — from managed to primary forests
Willim, K., Stiers, M., Annighöfer, P., Ammer, C., Ehbrecht, M., Kabal, M., … Seidel, D. (2019). Assessing understory complexity in beech-dominated forests (Fagus sylvatica L.) in Central Europe — from managed to primary forests. Sensors, 19(7), 1684 (13 pp.). https://doi.org/10.3390/s19071684
Identifying tree-related microhabitats in TLS point clouds using machine learning
Rehush, N., Abegg, M., Waser, L. T., & Brändli, U. B. (2018). Identifying tree-related microhabitats in TLS point clouds using machine learning. Remote Sensing, 10(11), 1735 (23 pp.). https://doi.org/10.3390/rs10111735
Representation of horizontal transport processes in snowmelt modeling by applying a footprint approach
Schlögl, S., Lehning, M., Fierz, C., & Mott, R. (2018). Representation of horizontal transport processes in snowmelt modeling by applying a footprint approach. Frontiers in Earth Science, 6, 120 (18 pp.). https://doi.org/10.3389/feart.2018.00120
An annually-resolved stem growth tool based on 3D laser scans and 2D tree-ring data
Wagner, B., Ginzler, C., Bürgi, A., Santini, S., & Gärtner, H. (2018). An annually-resolved stem growth tool based on 3D laser scans and 2D tree-ring data. Trees: Structure and Function, 32(1), 125-136. https://doi.org/10.1007/s00468-017-1618-3
Terrestrial laser scanning for forest inventories – tree diameter distribution and scanner location impact on occlusion
Abegg, M., Kükenbrink, D., Zell, J., Schaepman, M. E., & Morsdorf, F. (2017). Terrestrial laser scanning for forest inventories – tree diameter distribution and scanner location impact on occlusion. Forests, 8(6), 184 (29 pp.). https://doi.org/10.3390/f8060184
Multitemporal accuracy and precision assessment of unmanned aerial system photogrammetry for slope-scale snow depth maps in alpine terrain
Adams, M. S., Bühler, Y., & Fromm, R. (2017). Multitemporal accuracy and precision assessment of unmanned aerial system photogrammetry for slope-scale snow depth maps in alpine terrain. Pure and Applied Geophysics, 175(9), 3303-3324. https://doi.org/10.1007/s00024-017-1748-y
Terrestrial laser scanning improves digital elevation models and topsoil pH modelling in regions with complex topography and dense vegetation
Baltensweiler, A., Walthert, L., Ginzler, C., Sutter, F., Purves, R. S., & Hanewinkel, M. (2017). Terrestrial laser scanning improves digital elevation models and topsoil pH modelling in regions with complex topography and dense vegetation. Environmental Modelling and Software, 95, 13-21. https://doi.org/10.1016/j.envsoft.2017.05.009
Detecting tree stems from volumetric TLS data in forest environments with rich understory
Heinzel, J., & Huber, M. O. (2017). Detecting tree stems from volumetric TLS data in forest environments with rich understory. Remote Sensing, 9(1), 9 (17 pp.). https://doi.org/10.3390/rs9010009
Tree stem diameter estimation from volumentric TLS image data
Heinzel, J., & Huber, M. O. (2017). Tree stem diameter estimation from volumentric TLS image data. Remote Sensing, 9(6), 614 (11 pp.). https://doi.org/10.3390/rs9060614
Isolation of obscured forest tree stems using TLS data
Heinzel, J. (2016). Isolation of obscured forest tree stems using TLS data. In C. Muñoz Riveros, P. Javiera Vidal Páez, W. A. Pérez Martínez, P. C. Cruz Johnson, M. F. Keusch, & J. Torralba Pérez (Eds.), 7th edition of the international scientific conference ForestSAT 2016 (pp. 48-50). Universidad Mayor.
TLS field data based intensity correction for forest environments
Heinzel, J., & Huber, M. O. (2016). TLS field data based intensity correction for forest environments. In L. Halounova, V. Šafář, P. L. N. Raju, L. Plánka, V. Ždímal, T. Srinivasa Kumar, … Q. Weng (Eds.), The international archives of the photogrammetry, remote sensing and spatial information sciences: Vol. XLI-B8. XXIII ISPRS congress, commission VIII (pp. 643-649). https://doi.org/10.5194/isprs-archives-XLI-B8-643-2016
Integration of space-borne DInSAR data in a multi-method monitoring concept for alpine mass movements
Kenner, R., Chinellato, G., Iasio, C., Mosna, D., Cuozzo, G., Benedetti, E., … Strada, C. (2016). Integration of space-borne DInSAR data in a multi-method monitoring concept for alpine mass movements. Cold Regions Science and Technology, 131, 65-75. https://doi.org/10.1016/j.coldregions.2016.09.007
Snow in a very steep rock face: accumulation and redistribution during and after a snowfall event
Sommer, C. G., Lehning, M., & Mott, R. (2015). Snow in a very steep rock face: accumulation and redistribution during and after a snowfall event. Frontiers in Earth Science, 3, 73 (13 pp.). https://doi.org/10.3389/feart.2015.00073
Sediment storage and transfer on a periglacial mountain slope (Corvatsch, Switzerland)
Müller, J., Gärtner-Roer, I., Kenner, R., Thee, P., & Morche, D. (2014). Sediment storage and transfer on a periglacial mountain slope (Corvatsch, Switzerland). Geomorphology, 218, 35-44. https://doi.org/10.1016/j.geomorph.2013.12.002